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Special experimental data (biolog. experiment)
What kind of biological response is measured?
- inhibition or exhibition of muscles;

- electrical potential,

- other responses.

Drug agonist and antagonist

A B
L sy B
AR BR
Positive effect No effect
A - agonist B - antagonist

Drug <
dependent:

E— observable
event




Quantitative pharmacology

1. Problem
Experimental data (ED)

A, A, A
E, E, E

n

n

How to solve the problem of the best fitting?

- class of fitting functions;

- criteria of best fitting;

- methods solving these optimization problems.



Law of mass action

R — total number of receptors

A — total number of molecules

X — number of AR molecules

A+ R%e?@ AR
Vassoc = ki(A' X)(R' X)

Vv

dissoc

=k, X



The rate of formation

Z—T:ki(A- X)(R- X)- k,X

Ordinary differential equation-Riccati equation

At equilibrium (steady state)

K.(A- X)(R- X)=k,X

X <<A X = AR
A+Kk,
_k
K =—= - dissociation constant 1/k, - affinity

kl



Steady State

Receptor R — System S with two states:

SO free

Mass Service System

S,

S,

Sl occupied




ldea -What to do?

R o .
a x ()= X(A) a %@ =r(A
j=1
X(A) =r(AR
| = f(k,, A m=g(K,, A
__9 __f
Po = f +g P, = f+g

Absolute traffic capacity

fg
f +g




lon Channels

lon channels are proteins that span the lipid bilayer

Bilayer forms the cell membrane

lons, such as sodium, potassium, and chlorine, cannot cross the
lipid bilayer

When the channel is in an open conformation state, ions can pass
through the inside of the channel protein and thus enter or exit the
cell

The life time of ion channels could not depend on the nature of
the agonist. Another large group of receptors is whose effects are
transduced by G-proteins
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Dose — Response relations

E -effect
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Classical theory. Theory of Stephnenson axiom.

E. J. Ariens 1954
Extension of Clark theory
E=aX - directly proportional

E . A
A+Kk,

E_ =aRb E=

R. P. Stephenson 1956
Modification of Ariens theory

1. E can be produced by an agonist drug without total occupancy.

2. D —R complex provides a stimulus S to the tissue

S=e é—e A
"R "A+K,

3. The effect E is an unknown function f(S): E =1(S)

€, - Stephenson efficacy



Katz interaction scheme

A+ R¥34® ARYY® AR*

* A year later, after Stephenson’s work, another
paper (Katz 1957)was published, where Katz was
also seeking to explain partial agonism.

e His approach was entirely different from
Stephenson’s.

 He wrote down a simple explicit reaction scheme,
which is an approximation to the real mechanism.



R. F. Furchgott 1964 — Nobel price
Method for of estimation of k,
named “method of irreversible antagonist”
term “intrinsic efficacy” e,: e, =e,.R

D. Mackay 1966
It is theoretically impossible to estimate absolute value of

J.W. Black P. Leff 1983
Operational models of pharmacological agonism

E_X
Kg + X
Ke - value of X that elicits 1/2E

R
Ke

E =

1 =

- “operational efficacy”



History of the Problem

The quantitative analysis of drug—receptor interactions:
a short history

Professor David Colquhoun

Prof. David Colquhoun
Dept. of Pharmacology
University College London



Key players

Archibald Vivian Hill (1886-1377, Cambridge and
LICLE Hill £1208)] discovered the Langmuir binding
equation |9 years before Langmuir (1918)], and
applied it to his studies on nicotine and curare,

Alfred Joseph Clark (1885-1941, UCL and Edinburgh).
Clark made the firat serious atternpts after Hill to
apply physical laws to recaptors. His book and
reviews were very influential, although his analysis
of compatitive antagonism failed to identify the
adwantages of the dose-ratio approach.

Jdohn Henry Gaddum {1900-1965, UCL and
Edinburgh). Gaddum was the first to write the
equation for competitive binding at receptors {in
1837, a Physiological Sociaty abstract). But it raferred
1o binding not response, and 50 was not usable until
Schild’s work. In fact, these equations date back to
1914, and appeared in Haldane's book Enzprmes,
published in 1930 [65].

Heinz Otto Schild (1908-1984, UCL). Schild showed,
im 194% and the 1950s, how to obtain the real
equilibrium constant for an antaganist from
measurements of responses, and so crude
measurements such as 1T values were no longer
neaded, This was enaormously important because it
wias the first usable way of ocbtaining real physical
information about receptors,

Jeffries Wyman (1301-1985} (UCL, Harvard and
Rome), The seminal article of Wyman and Allen (1981]
[25] described how selective affinity for an active state
was linked to conformation change. This was written
in the context of haemoglebin (and enzymes). If it had
been read by pharmacologists at the time it might
hawve saved us & lot of argument and
misunderstanding,

Robert Stephenson (1925-2004, Edinburgh),
Stephenson's influential 1956 paper proposed clearly
that to understand an agonist it was important to
distinguish batween its ability to bind and its ability to
activate once bound. He made a brave attempt to
provide a general theory for agonists, based on the
sort of null methods that Schild had exploited so
successfully for amagonists, Sadly this proved over-
ambitiows {it is a pity that he was not aware of
Whyman's work).

Bernard Katz (1811-2003, UCL]. In 1957, del Castilla
and Katz, characteristically, proposed not a general
theary bBut a very simple physicel mechanism, in an
attampt to axplain the supposed partial agonist action
of decamethonium. This mechanism was sufficient 1o
illustrata beautifully the nature of the affinity-efficacy
{or binding-gating) praoblem. It provided a counter
example that showed that the Stephenson epproach
was wrong {although Wyman's work had actually
already shown that in a much more general way),

Alan Geoffrey Hawkes (1938-present, UCL, Durham
and Swansea). Hawkes is responsible for much of the
general theory underlying the interpretation of single-
channel recordings. His work, in conjunction with the
developmant by Neher and Sakmann of the patch-
clamp methad (1876), enabled the first separate
measuraments of affinity and efficacy (for the
nicotinic acetylcholine receptor [52,72]).




Scheme of the THM

A® AR® S® E



Theoretical Hyperbolic Model of drug-receptor interaction:
affinity and efficacy of partial agonist

Basic Assumptions of the model

a) Interaction D-R bimolecular

AR

X = law of mass action
k,+ A

b) Stimulus S
S=e, X = €A =e, X Stephenson, Furchgott
R A+Kk,
c) D —R data is fitted by a hyperbolic function

oa = LA

A+L,

d).E; exists (depends only the tissue; $ drug A producing g7 )
A- Full agonist

(R. B. Barlow — 1999 — over 70% )

e) S — R relation — drug independent property

f) Equal stimuli lead to equal effect.



Consequences of axioms of THM

There exist constants C, and C, (depended only of T)  such that

—n_ GiS
S+C,
Explicit formulas for affinity and efficacy
C,L
Ka = S L
C - L 1

dissociation constant efficacy



Pharmacological interpretation of the parameters and their

calculation
A
L, » Ej L, » A
max effect of A 0.5E
D — R data
C, » ET C2 _
m elementary measure (unit) of
max effect of A on the stimulus elicits of 0.5E]
tissue T full agonist
A e _ | A
N Em (| <]) K, = a AC - 1. (Mackay)
Er-lr-] A 1-1 A 2 A



Analysis of the model

“amplifier” m, = |
1-1 4
e . C,
intrinsic stimulus™ ¢, = —2
R
Stimulus S=c,mX
Biological effect ~ E* = CnMX
lological effec mX +R

A 10
Ky = (m, - DEC ECa = aen?;Jrl 1A

Partial agonists haven’t a receptor reserve



Quantitative Structural — Activity Relationship (QSAR)

Dose —effect (response)
Structure of the drug — effect (response)

Compound

Disturber Activity

Desirable
Effect




Problem: investigation of structure — receptor relations
What kind of mathematical tools have been used?
Artificial neural network (ANN)

Pattern vector
X

input output

Transfer function

@L Threshold Input Layer
|
C; Wi 9 i
W, f S Oor1
@ Hidden
' Sums input Layer
inputs  Tyansform inputs
C W, to activity level
Output Layer
Jj-th neuron i-th neuron

f(x)



Activity, affinity and efficacy

A T A
=t O e @
For Output layer we can use formula (1) as transfer function of
unit C and formula (2) as transfer function for unit D.
Training of ANN — using of database NCBI, KEGG and ExPaSy
After training of this neural network, we expect to predict the
following three characteristics for the compounds with novel
structure: EC., - a measure for their activity and K, and e, -
parameters which allow to compare their selectivity. The
commonly used architecture for modeling of QSAR in the
pertinent literature is a three layered feed forwarded network with
sigmoidal hidden-unit activity and a single linear output neuron.
This architecture does not allow to predict efficacy and selectivity
of the compounds.

K A




Network architecture in modeling selectivity and efficacy of

enkephalin analogues.

Pattern vector

Input layer

Hidden layer 2

Output layer

f,(x) £,(x) f.(x)



Since the goal of the present neural network modeling concerns not only
activity (potency) of the enkephalin analogues, but their selectivity and efficacy
too, we suggest the following network architecture: a four-layered feed-forward
network with sigmoidal hidden-unit activity of Hidden layer 1, linear units
activity for neurons from Hidden layer 2 and Output neuron I. The sigmoidal
transfer function for Hidden layer 1 activity is:

1

(9= exp (A W - v,)

where X Is a n-dimensional input vector, coding the structure of the
enkephalins; w, v and h are the weight matrixs of the Hidden layer 1, Hidden
layer 2 and Output layer respectively. The threshold n,, which is the weight of
the bias neuron, is the EC,, value of the compounds and concerns a, b, ¢ and

d units. For the next e - h neurons form Hidden layer 1, the threshold N, is the

peptides; . _ . .
The linear activity function in the Hidden layer 2 for neuron | is:

4 n
ECA(x) = énj (1- exp (é w,x - ECy))™
For neuron E it is: = =

8 n
o]

En(x)=an; (- exp @ w;x - EL)”

j=5



Models of similarity of chemical
compounds

e QSAR Models- ANN

 Models of Protein Threading Problem



COMPLEMENTARILY

LIGAND

LIGAND, DRUG , CHEMICAL COMPOUND
ENDOGENOUS COMPOUND, MODULATOR
TRANSMITTER

BINDING

COMPLEMENTARILY,

TARGET

RECEPTOR
RECEPTOR, ENZYME, PROTEIN




Chemical spaces and molecular
similarity

Similar Property Principle — Molecules having
similar structures and properties should also exhibit
similar activity. (Often but not always true)

Thus, molecules that are located closely together
In chemical reference space are often considered
to be functionally related.



LARGE MOLECULAR SIMILARITY

The training phase pm-:eé-ds as follows:

1.

Extract a random set of training patterns {p;,
i=1,2,...,k p; € P} from the data set P.

. Map the patterns p; onto ‘K" using a conven-

tional nonlinear mapping algorithm (p; — v;,
i=12,...,k y; € R").

. Select a set of reference patterns {r;,, 1 = 1,
2,..., L r; € P} from the data set P.
. Compute the similarity {s;, i = 1,2,..., k] =

1,2,...,I: s = sim(p;,1;)} of each pattern in
the training set, p;, to each of the reference
patterns, r;, identified in step 3. Denote T =
{(si,vi),i=1,2,...,k} as the training set.

. Train a neural network, net, to recognize the

mapyping s; — y; using the input/output pairs
in the training set T. Export the network net
and its associated parameters.



Molecular descriptors and
chemical spaces

TABLE 1.2. Different types of molecular descriptors
TABLE 1.2. Different types of molecular descriptors
Descriptor category Examples
Physical properties Molecular weight

Atom and bond counts

Pharmacophore features

Charge descriptors

Connectivity and shape descriptors

Surface area and volume

logP(o/w)

Number of nitrogen atoms

Number of aromatic atoms

Number of rotatable bonds

Number of hydrogen bond acceptors

Sum of van der Waal surface areas of
basic atoms

Total positive partial charge

Dipole moment from partial charges

Kier and Hall molecular shape indices

Solvent-accessible surface area

1T

CaaH TN, Boum ke af carkan stoms

“_ Pl virrabags of oolubable bumds
o Ty Fpgr
| ) i Bl vz 1)
L P = R i
e "T' i) Melecular eeancaviy ndzy
."ﬂl"‘ ."-x.-'
_f_
| =
&
LY

Solvem—secesinls surbaos aren

Wan der Waals vlome

Figne 1.3 Txamples of dereripiars classifizsd acoording todimensionaling
(adaptzd from Bajorath 2002

e There are no generally preferred descriptor spaces.

e Require to generate reference spaces for specific
application on a case by case



Aim was the definition of a set of substructures that cover alarge diversity of
organic molecules. The strategy applied for the creation of substructures was as
follows: (i) estriction to most common elements; (i) systematic generation of
substructures by using an isomer generator; (iii) selection of substructures by
chemical experiences; (iv) elimination of very exotic substructures. Finally, a
set of 1365 substructures was obtained, divided into eight groups as shown in
Tablel.

molecular
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bina
] SubMat -
( File with p Ty

5 b= T :
structku res rluumluulul ]

A faw
parameters

001010100100 g
|

110000000010
0-0-0-0-0-0-0-0-01 O §

SufeEitnciues
Eaomcerpiem et

N S|

Chemolnformatcs [/ Chemometrics
software

Figure 7. Software SubMat for the generation of binary substruoc-
ture descriptors from a file with molecular structures and a file with
substrudures (both in Molfile format). The result file in text format
con be easily imported into other software.



1. Compute the similarity {s;,i = 1,2,..., s =
sim(p,r;)} of the new pattern, p, to each of
the reference patterns, 1;, identified in training
step 3.

2. Map s — v, s € R, y € R" using the neural
network net derived during training step 5.
Store the coordinates y.

I Y ¥

- d%;w# by

] b ¥ T2 Tn

FIGURE 2. Tandem nonlinear mapping network

architecture.



TABLE |. Substructure groups and number of substrudures per group

Group Group definition No. of
number substructures

| Elements (single atom substructures) 46

2 Two-atom substructunes 78

3 single, nol aromatic rings 404

4 Condensed, not aromatic rings 130)

3 Aromati: rings 97

6 Other rings 39

Fi Trees (chams and branches) 418

5 Functional groups 153

Total 1365




TABLE Il. Examples for two-gtom substructures

Subgroup Element Bond Type'®!
Atom 1 Atom 2 5 d L a n
C and another C B + + + o+ o+
C ' + + + + +
C 0 + + +
C 5 + + +
C A + + + + +
C F +
C Cl +
C Br +
C | +
N and another N IN + + + + +
N 0O + o+ +
N 5 + + +
N A + + + + +
N Q + + + + +

"*"Bond types are s, single; d, double; t, wiple; a, aromatic; n, not de-
fined. A plus (+) indicates that this substructure s used.



Q--Q Q--Q’ Q--q Q--q’

| | | | | i I |

| | | ] | i | i
s = %

Q--q’ Q--q’ Q--Q--Q

I i | 1 | |

i | i | ] |

Q=-=Q Q==-Q Q--Q

Figure 1. Bxamples for substructures in group 3 [single, not aro-
matic rings). Four-membered rings made only by Q-atoms and
the used substitutions are shown. All bonds have not-defined type.
Such ring substructures have been defined for ring sizes 3 to 8.



.r' J‘*\ * - rd
r==" r---rf l---'l" " e T
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| 1 | | | ] 1 |
| p—_ | | | Lmmd | Sy
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/ /4 V4 4
--1 1
1 1
I : .- I

Figure 2. Examples for substructures in group 3 (single, not aromatic rings). Rings mode only by C-otoms and vsed subditutions as well
os unsaturations are shown for 4-membered rings. Such ring substructures have been defined for ring sizes 3 to 8. A dotted lined denctes

a not defined bond type.

c+n+o=rfoor=3.4.5 (1)

bt
-\_._-'

(

h=h_ Bpax — 25 Mg — 4,... with > 0

hoax =2c+n (3)



/\ AN / A\ o
N—0 N—I©O N—N N—N N—N 0
BCF 1,603 3 1.023 12 912 75463
IR 0 0 4 i i a3
MS 15 0 13 0 3 1,232
A A | A A | A A\
] M N N O—0 N
BCF 3s 16,425 24 625 a4 L]
IR 0 2 0 0 0 0
MS i 229 0 1 i 0
0 0 N N
";E % by 7\ i
N N—0O N—MN N—N N—N
BCF 4 0 M 185 41
IR 0 0 0 0 0
MS 0 0 0 4

Figure 3. Exhoustive set of 3-membered hetero cydic rings made from elements C, M, and O, confaining at least one hefero atom and
having at least one free valence. Mumber of occurrences in the Beilstein Crosdtire Database (BCF; 4 million compounds), in an infrared
spedml datobase (IR; 13,484 compounds), and in a mass spectral daiobase [M3; 106,955 compounds) are given.
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Figure 4. Selected substrudures with condensed rings (group 4)

obtained by the combination of a 5-membered ring with o 3-, 4-
or S-membered ring.

TABLE lll. Mumber of free substructures (isomers) with three fo six
C-atoms and one or two double bond equivalents {DBE)

C-atoms Mumber of 1somers
DBE = 1 DBE =2 DBE = 2
ong double bond  two double bonds one triple bond
3 1 | |
4 3 2 2
3 3 6 3
i} 13 16 7
SLLITI 22 25 13
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I\ J\ Figure 5. Substructures used containing o
&-membered M-oromatic ring (group 5).



1 2 3 4 5
/H =
o ‘\\“N’/’ H\““N""r N N=— N"f
< | o
5 Q Q
IR 9.52 14.65 13.36 0.76 0.08
MS 5.07 14.81 14.84 0.34 0.01
3 i ) 9 10
H H A
A9 D/\l/\o , ‘ ud /k /K
A ] o
H o
IR 0.49 0.88 14.33 3.70 37.88
MS 0.92 4.68 16.37 1.66 36.12
11 12 13 14 15
H
| H -
N
o g _
ﬂf/ H Si H
5
o o /f{”\'\h g H>I/ \ﬁﬂ
H H
IR 1.10 4.78 0.05 9.03 0.39
MS 2.92 4.58 0.16 1.39 4.80

Figure &. Examples of substructures from group 8 functional groups). The percent of compounds
two spectral dotabases, one with 13,484 infrared spectra, the other with 106,955 mass spedm;

containing the substructure is given for
see Figure 9.




Discrete-Valued Feature Vectors

The components of discrete feature vectors may indicate the presence or
absence of a feature, the number of occurrences of a feature, or a finite set of
binned values such as would be found in an ordered, categorical variable.

Each component of an n-component binary feature vector, also called bit
vectors or molecular fingerprints,

Vo = (Va (5 Vi (2 )aees VA (53, Vs (%,))

Indicates the presence or absence of a given feature, x,, that is

(x) 1  Feature present
VLX) =
. 0  Feature absent



A wide variety of features have been used in bit vectors, including molecular

fragments, 3-D “potential pharmacophores,” atom pairs, 2-D pharmacophores,
topological torsions, and variety of topological indices.

Binary feature vectors are completely equivalent to sets. Care must be exercised when
using them to ensure that appropriate mathematical operations are carried out. The
number of componentsin abit vector isusually quite large, normally n >> 100. In some
cases n can be orders of magnitude larger, sometimes exceeding a million components.

Bit vectors of this size are not handled directly because many of the components are
zero, and methods such as hashing are used to reduce the

size of the stored information.

Bit vectors live in an n-dimensional, discrete hypercubic space, where each vertex of
the hypercube corresponds to a set. Figure 2 provides an example of sets with three
elements. Distances between two bit vectors, v, and vz, measured

In this space correspond to Hamming distances, which are based on the

city-block |1 metric

dllam(‘?&!vn}ﬁ[vﬁ _vﬁ|_'Z|FA(IJ;)_”R{Ik]| '
k=1
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Qe (Vs Vg ) =| Vi = ¥5 = 3 [ va () —vp(x,) | = [T - 0]+ [1 = 1]+ [1 - 0]=2
=]

Fig. 2. Distance between two binary-valued feature vectors v, and vy is not given by
the Euclidean distance but the Hamming distance between the two.



The most widely used similarity measure by far is the Tanimoto similarity
coefficient Sr.., which is given in set-theoretic language as

A B
S'Tan{ﬁ’B} - I A:Bj -
> min[ A(x,), B(x,)]
Si(AB) = > max[A4(x,),B(x,)]
&

The Tanimoto similarity coefficient is symmetric,

STan(A?B) = STm(B:-A) ,

as are most of the similarity coefficients in use today, and is bounded by zero
and unity,

0<S, (A,B)<1 .

Tan



guery hit 1 hit 2 hit 3

0 0 O 0 0 0 0 0
E’J"‘E.JLD" s"l“r’u‘“c"' 5’J“9’u‘c*” BAB)LD’
A t=1.0 t=1.0 t=1.0

=,

B t=0.99 t=0.98 t=0.98
G’:LNK | N/I\/\,)N\I Hf 1 H\|/\/\“L‘f g Nfl\/\)* /é]ij\/\)*j
C t=0.97 t=0.97 t=0.89

Figure 8. Exarmples for structure similarity searches. The query structures have been searched in a spectral dotobase containing 106,955
compounds. t, Tanimoto index (structure similarity) between query and hit. Numbers within a structure dencote a chain of C-atoms of the
given length. Query structures are (A) 10-hydroxypalmitic acid methylester; (B) fentanyl; (C) resochine.



Tversky - Asymmetric Smilarity Indices:

. |ANnB]|
“a|A-B|+f|B-Al+|AnB|’

S;..(A,B)

where a,3 = 0 . This generalizes the typical symmetric Tanimoto similarity
measure given, which obtains when a =8 = 1. For all other values

of a and B Sw.(A,B) is asymmetric, that is, Sw.(A,B) # Sr(B,A). Only the
two extreme forms will, however, be considered here, namely, those when
a=1and f=0and a=0 and 3 = 1. Their set-theoretic forms are given by

y=—|ANB] |AnB|
“|A-B|+|ANB| _ o |IB-A|+|ANB|
Fraction of A similar to B
|AnB| =|Ar’"ﬁE|
Al |B|

S;.(AB Spe(BA) =

Fraction of B similar A
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> min[A(x,), B(x,)]
S- PL,E _ _k _—
e (£45) Z A(x,)

As was the case for the symmetric similarity coefficient

0<8S.

T

(A,B).S...(B,A) <1 ,

although generally S+.(A,B) # S-.e(B,A).



A OH ]/ Gz:{'DH

i
CAPTOPRIL S8 E%TI -0 ENALAPRIL
(Query Structure) (Target Structure)

B ooy ]/ oy ™

CAPTOPRIL e e T ENALAPRIL
(Query Structure) (Target Structure)

Fig. 3. Asymmetric similarity searching might provide some benefits not afforded by
symmetric similanty searching. (A) Database searching using ISIS keys and symmet-
ric similarity searching, S, . will not yield enalapril as a “database hit” because the
similarity value is too low, 058, (B) Whereas database searching using asymmetric
similarity searching, Si,.. could yield enalapril as a “database hit” because the asym-
metric similanty value 1s (0.78.



and

Petke similarity indexes.

e

S.. (AB)= ‘Aﬁﬂ_‘
e max([AL[B)
S, (AB)= |AnB| B

Fetain min(|A|,| B|)

0<S,, (AB)<S, (AB)<S, (AB)<l.
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CAPTOPRIL St (T =7 ENALAPRIL
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B oH
o {_I.;/f E::;E:"GH E:'::;i:’
| RS HJ\H'NCI :> HS\/[\H, H(j
e C o
ENALAPRIL S5 (QT) = % - 0.69 CAPTOPRIL
(Query Structure) ' (Target Structure)

Fig. 4. (A) The other asymmetric Tversky similarity index, S5 . has a value of 0.69.
Exchanging the roles of the query and target molecules (Q<T) gives (B), which shows
that smaller target molecules are more likely to be retrieved from a large query structure
usimg the asymmetric Tversky similarmnty mdex than the Tanimoto similarity mdex.



Chemical Graphs

Chemical graphs are ubiquitous in chemistry. A chemical graph, Gk,
can be

defined as an ordered triple of sets
G, =(V,.E.Ly)

where VK is a set (see the Appendix for notation) of n vertices (“atoms”)

V, = {H (Il ), Vilx, }r"'?Vk (In)}

= {Fk,l*v.i:,l yrery v&,n}



E, = {E.i:,liek,z?'“lek:m} .

where each edge corresponds to an unordered pair of vertices, that is e« =
{Vip,Via} , @nd L«is a set of r symbols

-

L, =4€, -4 2sen €y}

that label each vertex (*atom”) and/or edge (“bond”). Typical atom labels include
hydrogen (“H”), carbon (“C”), nitrogen (“N”), and oxygen (“O”); typical

bond labels include single (“s”), double (“d”), triple (“t”), and aromatic (“ar”), but
other possibilities exist. Whatever symbol set is chosen will depend to some
degree on the nature of the problem being addressed. In most chemoinformatics
applications hydrogen-suppressed chemical graphs, which are obtained by
deleting all of the hydrogen atoms, are used. Figure 1 depicts an example of
two hydrogen-suppressed chemical graphs, G.and G:, which are clearly related
to a chemist’s 2-D representation of a molecule.
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Fig. 1. An example of two hydrogen-suppressed graphs G, G, and a common substructure CS(G,.G,) and
the maximum common substructure MCS(G,.G,) are shown above. The Tanimoto similarity index and the dis-
tance between the two chemical graphs are computed below.



GicG,=>V/,cV,andE, cE, ,

that is, the vertex and edge sets V'vand Ekassociated with the subgraph, Gk,
are subsets of the corresponding vertex and edge sets V«and E«of the graph,
G«. Many operations defined on sets can also be defined on graphs. One such
operation is the norm or cardinality of a graph,

|Gul = Vil +[ B4

which is a measure of the “size” of the graph. Another measure the edge norm,
which is of interest in this work, is given by

|leE=|Ek|*

where the subscript E explicitly denotes that the cardinality refers only to the
edges (“bonds”) of the graph. For the two chemical graphs depicted in Fig. 1,
|G1|e= 22 and |G:|e= 20. Note that only the number of bonds and not

their multiplicities (e.g., single, double) are considered here. However, many
other possibilities exist, and their use will depend on the problem being
addressed .

A key concept in the assessment of molecular similarity based on chemical
graphs is that of a maximum common substructure, MCS(G,,G;), of two chem-



ical graphs, which derives from the concept of maximum common subgraph
employed in mathematical graph theory. There are several possible forms of
MCS . Here we will focus on what is usually called the maximum common edge
substructure, which is closest to what chemists perceive as “chemically
meaningful” substructures, but we will retain the ssmpler and more

common nomenclature MCS. A common (edge) substructure (CS) of two
chemical graphsis given by

CS(G,,G,),,=E' NE’ = Ef = E

Where E and E'  are subsets of their respective edge sets, Ef C E; and E/ = E;.
and are equivalent. Thus, the intersection (or union) of these two equivalent subsetsis
egual to the sets themselves. Asthere are numerous such common substructures,
CS(G,G)«, kI =1,23, ..., determining the MCS between two chemical graphsis
equivalent to determining the edge intersection-set of maximum cardinality, that is

MCS(G,,G,) = CS(G,,G,),, such that |CS(G,,G,),,| = |1Lz§x|CS[G,,GJ]”L_.
Thus,
G, NG, = MCS(G,,G,) .



Asymmetric similarity indices developed by Tversky
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Two complementary compound sources are
accessible for virtual screening, databases of
known structures and de novo designs (including
enumerated combinatorial libraries). Some major
databases frequently employed for virtual
screening experiments are listed in Table 1. In
addition, several companies offer large libraries of
both combinatorial and historical collections on a
commercial basis. Usually the combinatorial
collections contain 100k—-500k structures, whereas
commercially available historical collections rarely
exceed 100k compounds. Most of the major
pharmaceutical companies have compound
collection in the 300k+ range.



Table 1.

Some major databases that are useful for virtual screening experiments (adapted from Eglen

et al23)
Mo. of L.
Database Description
molecules
ACD® = 250,000 Available Chemicals Directory; catalogue of commercially available

Beilstein® = 7,000,000

CsDt = 200,000
CMC® = 7,000
MDDR? = 85,000

MedChemd : = 35,000

SpResIY > 3,400,000

wDI® > 50,000

specialty and bulk chemicals from over 225 international suppliers
Covers organic chemistry from 1779

Cambridge Structural Database; experimentally determined three-

dimensional structures of small molecules

Comprehensive Medicinal Chemistry database; structures and activities of

drugs having generic names {(on the market)

MACCS-II (MDL) Drug Data Report; structures and activity data of

compounds in the early stages of drug development
Medicinal Chemistry database; pharmaceutical compounds

Substances and bibliographic data abstracted from the world's chemical

literature

World Drug Index; pharmaceutical compounds from all stages of

dewvelopment

*Molecular Design Limited, San

Leandro, C4, U.S.A.

i"Eheilsteiﬂ Informationssysteme GmbH, Frankfurt, Germany

*CSD Systems, Cambridge, UK.

dDEI'y’“ght Chemical Information Systems Inc., Claremont, CA, U.5.4.

*Derwent Information, London,

Copyright Landes Bioscience

LK.




Combinatorial libraries usually provide small
amounts of uncharacterized compounds for screening.
Once these samples are fully characterized—e.g., by
HPLC and mass spectroscopy, the data are of interest
for structure-activity purposes. In most companies, these
compounds are also present with the “historical”
collection of compounds, generally derived from classical
medicinal chemistry programs, most of which have very
well-defined chemical characteristics. Commercial
compound collections can also be purchased that fall
between these two extremes. Collectively, therefore, the
iInformation used to relate biological activity and chemical
structure must clearly integrate all of these types of
compounds.



Similarity Searching

Chemical similarity searching is a straightforward practical
approach to identify candidate molecules by pair-wise comparison of
compounds. In its simplest form, the result of a similarity search in a
compound database is a ranked list, where high-ranking structures
are considered to be more similar to the query in a certain sense
than low-ranking molecules. If either the query structure(s) or the
database structures or both structures reveal a certain (desired or
undesired) property or activity, some conclusions may be drawn for
the molecules under investigation. Structures are compared based
on a similarity value that is calculated from their molecular
descriptors. There are two assumptions inherent to this idea,
representing the hypothesis “if molecule A is more similar to the
guery molecule R than molecule B, then molecule A might more
IiIFer show some biological activity that is comparable to the activity
of R”:



 The molecular representation (descriptor) is assumed to
appropriately cover those molecular attributes which are
relevant for the underlying SAR/SPR /Specific
absorption rate, Society for Psychophysiological
Research/

* The similarity measure applied is assumed to accurately
relate differences in molecular descriptions to differences
In the quality function ( Principle of Strong Causality).



In the past, the analysis of assay data was
primarily performed by medicinal chemists, looking
at the active compounds and then deciding which
hits the efforts should be focused on. First, with the
Increase In the number of experimentally
determined hits, this approach becomes
iIncreasingly ineffective and computational
techniques are increasingly used to classify the
nits and derive hypotheses. Second, one should
Keep In mind that it is basically impossible for a
numan being also to take into account the large
number of inactive compounds. The development
of pharmacophore hypothesis, for example,
typically requires the incorporation of information

on inactive compounds.




By similarity searching, sets of candidate structures can
be rapidly compiled from databases or virtual chemical
libraries. Practical experience shows that such hypotheses
are often weak and there clearly is no cure-all recipe or
generally valid hypothesis leading to success in chemical
similarity searching. Nevertheless, similarity searching
provides a useful concept. A practlcable measure of
success can be expressed by an enrichment factor, ef,
giving the ratio of the fraction of active molecules in the
selected subset compared to the fraction of actives in the
total pool (database). This value may be regarded as an
estimate of the enrichment obtained compared to a random
selection of molecules, as given by Equation.

_ Jractionofactiveinsubsat

Jracionofaciiveinpood



A large number of molecular descriptors has
been developed over the past decades
(Definition ). The particular selection of a
molecular representation defines a chemical
space, and thus the ordering of molecules
within this space. The choice of descriptors
Influences the distribution of structures.

The molecular descriptor is the final result of a logical and
mathematical procedure which transforms chemical
iInformation encoded within a symbolic representation of a
molecule into a useful number or the result of some
standardized experiment.” (according to Todeschini and

Consonni)



Thank you!!!




